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Sufficient conditions of over-al1 asymptotic stability are established with 
respect to coordinate and parameter mismatch for additive systems with a 
reference model. Application of derived condition is shown on the exam- 
ple of a second order system. 

One of the fundamental properties that a self-tuning system must possess is that of 
asymptotic stability. Xt is important that the self-tuning circuit ensures not only the sys- 
tem asympto~c stability at small a p r i or i u~nown variation of the object parame- 
ters but, also, at any initial deviations, i, e, that it guarantees the over-all stability of 
the system [IL]. It should be borne in mind that the asymptotic stability of additive sys- 
tems with respect to tnned parameters depends on the mode of control actions. With some 
hinds of such actions an asymptotic stability with respect to parameter mismatch may 
not be feasible. 

Certain conditions that ensure a uniform asymptotic stability of an additive system 
with a model were obtained in [2], but conditions of over-all uniform asympto~c stabi- 
lity were not obtained there. 

Below we determine the conditions that must be imposed on the reference model, 
the self-tuning circuit, and on the control action which would ensure the over-all asymp- 
totic stability of a self-tuning system with respect to coordinate and parameter mismatch. 

1. Let the equations of the system and of its reference model be of the form 

2’ ($1 == Ar (t) i- IAA 4 6A (t, x, yfl x (t) -+ f (t), x (to) ‘-‘x0 ““’ 

Y (G = Ai/ (0 i- f (t)t Y (to) = Y, (1.2) 
where x (t) e R”and y (t) E R” are phase coordinate vectors of the system and re- 
ference model, respectively; A is a real constant stable IL X rr matrix; AA is a real 
constant n x 12 matrix whose coefficients dependent on the control objectives are a 
priori unknown, and 6A (t, 5, y) is an n X n matrix of parameters that are affected by 
the self-tuning circuit. Matrices A, AA , and 6A (t, X, Y) are of the form 
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and the vector of control actions is of the form 

f’ (t) = (0, . * - , 0, fn (0) 

where a prime denotes the transposition of a vector or matrix. 
The matrix form of the n- th order equations of systems (1.1) and (1.2) does not re- 

strict the generality of exposition (any linear system can be reduced to a single equation 

of a higher order). 

(1.3) 

Subtracting (1.2) from (1.1). for the parameter mismatch vector E(t) = 

x (0 - y(t) we obtain the equation 

E’ (t) = AE (t) + [AA + 6A (t, z, y)l J: (t), E (to) = e, 

or in the form more convenient for further analysis 

E’ (t) = AE (t) + x (t) CL (t, z, y), E (t,) == Ea (1.4) 

where X (t) is an n X n matrix of the form of AA in (1.3) in which the last row co- 
incides with vector z’(t), and a (t, L, y) is the parameter mismatch vector of the form 

a’ (t, IC, y) =: (Au, i- aa, (r, x, Y), . . . , Aa,, + b, (6 5, Y)) 

Let us consider the self-tuning circuit defined by a following equation 

a’ (t) = - X’ (t) r (t, z, y) E (t), CL’ (to) = a,’ = 

(Au,, . . . , Au,) (1. 5) 

where r(t, z, y)is an rz X n positive definite symmetric matrix whose properties com- 
pletely determine the self-tuning circuit. 

The necessity to select the form (1.5) for the self-tuning circuit was considered in 
detail in [l, 21. Here we shall only point out the theoretical importance of the indepen- 

dence of the right-hand side of (1.5) from the unknown and nonmeasurable parameter 
mismatch vector CL (t), Absence of the latter from the right-hand side of (1.5) results 
in considerable difficulties in the analysis of stability of system (1.4), (1.5). 

The probl.em is stated as follows: determine the sufficient conditions of the over- 

all asymptotic stability of the ststem of Eqs. (1.4) and (1.5). 
To solve that problem we use a single general theorem stated below. 

2. Let us consider the following Cauchy’s problem: 
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z’ (t) = F (z, t), F (0, t) = 0, z (to) = z. (2. 1) 

F : R" x [O, 00) - R" 

where F is a certain nonlinear operator which satisfies the conditions under which the 
theorems about local existence and uniqueness of solution of problem (2.1) are valid. 

We denote by (z, y) the scalar product in R”‘-, by 11 z (1 the Euclidean norm of vec- 

tor z E- R”” , and by d (z, G) the distance between vector z E R”” and some set 

G c R”. 
Definition. The trivial solution of system (2.1) is considered over-all asymp- 

totically stable uniformly over initial data, if it is uniformly stable at the initial instant 
& and, if for any sphere Sk = {Z E R”’ : 11 z 11 < K} and any number y > 0 

there exists a number T (y, K) > 0 such that for all t > to f T (Y, K) and any 

ts > 0 and any zo E Sk , II z (t) II< y [3]. 
Theorem 1. Let us assume that there exist two continuously differentiable func- 

tions V (z, t) and W (z, t), V, W : R” X IO, m) --f R’ which in any arbitrary 

sphere S, have the following properties: 

A) WI (11 z 11) 6 v (z, t) < (“2 (11 Z 11) 

where w1 (u) and ma (u) are continuous nondecreasing functions such that a1 (0) = 

02 (0) = O,@l (u) > 0, co2 (u) > 0, u#O and wl(u) --, 3. when u-+w; 
B) in solutions of system (2.1) 

v’(t)= $-+<gradV, F><o,(z)\<O 

where 0, (z) is a continuous nonpositive function in I?“’ and 0 ( o3 = 0) , denotes 
a set in R” for which os (z) = 0; 

C) for 0 < t < 00 and all z E Sk function w (z, t) is bounded and 

I w (z, t) I < L (W; 
D) for some number B > 2L (K), any t, > to > 0 and any number CL, 

O<P<K there exist numbers T (B), 0 < 7’ (B) < i>~ and p. ( p, B, 

T (4) such that 

W*(t) = SV/dt + <gradW, F> = E(z, t) 

satisfies uniformly with respect to z E E (p, p) the inequality 

1 ‘*+ciB’ E (z (s), s) ds I> B 
1, 

where 0 < p < p. (p, B, T, (B)) and E (p, p) is a set of the form 

E (~7 P) = {P_ < II 2 II < K, d (z, 0 ( 03 = 0)) < P> 

(2.2) 

The trivial solution of system (2.1) is then over-all asymptotically stable with re- 
spect to initial data. 
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Theorem 1 represents a certain enhancement of the known stability criterion [4]. 
Stipulation a) may be otherwise specified as a requirement for function V (z, t) to be a 

positive definite and allow an infinitely small upper and infinitely large lower limits. 
Requirements A), B), and C) coincide with those of Matrosov’s theorem, while D) is less 
stringent than the corresponding conditions stipulated in [4]. 

The proof of Theorem 1 differs from that of Matrosov’s [4] only by the lemma on 
“discarding” , a definition proposed in [5]. Hence we shall only present the proof of that 

lemma. 

Lemma on “discarding”. The perturbed motion z (., of system (2.1) can- 

not constantly remain in the set E (CL, p) during time T (B), where E (p, p), B , 
and T (B) are determined by condition D) of Theorem 1. 

P I o of . Let us assume that the perturbed motion z (t) remains in the set E (p, 
p) during time T (B). Then, using (2.2), we obtain that 

I W I”!W$ T W), t + T (4) - W (2 (% t) I = (2.3) 

which contradicts condition D) of Theorem 1. 
3. We shall use Theorem 1 for determining conditions of the over-all asymptotic 

stability of the trivial solution of system (1.4). (1.5), which is uniform with respect to 

initial data. Let us consider function 

v (8, a, t) = &‘I? (t, 2, y) e + a’a (3.1) 

where matrix I? (t, 2, y) is the same as in Eq. (1.5). The total derivative of function 
(3.1) with respect to time, determined by solutions of system (1.4), (1.5) is 

Y* (t) = E’ (~‘r + rA + r-j E (3.2) 

Let us assume that the conditions 

c, 11 P II 2 d p/r (6 2, Y) P G C, II P II 2 
(3.3) 
(3.4) 

P’ wr + rA + r.1 P q - c, II P II a 

are satisfied for all t > 0 and any arbitrary vector p E R* . In these equations and 
in what follows Ci denote positive constants whose values are unimportant. 

From (3.3) we obtain that 

II r (t, x7 Y) II < c4 (3.5) 

Note that there exist, for instance, constant matrices that satisfy conditions (3.3) 

and (3.4) [S]. 
We shall show that function (3.1) satisfies stipulations A) and B) of Theorem 1. Evi- 

dently 
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c5 (II E II z + II a II 9 < 7 t &v a, t) < c6 (11 e II ’ + II a I/ ‘> 

(cs = min (cl. I), cs = max (cs, 1)) 
(3.8) 

which proves that requirement A) of Theorem 1 is satisfied, and requirement B) imme- 
diately follows from condition (3.4). The set 0 (w, = 0) is a hyperplane of the form 

E = 0 in space Ran. 
Function (3.1) satisfies conditions of the theorem of Persidskii [3] which implies tha 

the trivial solution of system (1.4), (1.5) is uniformlv stable with respect to to. This 
shows that for all t > to > 0, 11 e. II < K, II a0 11 < K 

II E (t) ila + 11 a (t) 11” < & V (80, ao, to) < s If? = Da (K) 

or 
II e (t) II 6 D (W, II a (4 II < D WI 

As the second function w (8, CC, t) we take function 

w (E, CC, t) = E’X (t) Ct 

We assume that the vector of control actions is bounded, 

II f (t) II a F,, ogt,gt<cc 

(3.7) 

(3.8) 

i. e. 

(3.8) 

Owing to the asymptotic stability of system (1.2). vector 9 (t) is also bounded for all 

O\(t,\(t<w and IIyo(I<II,i.e. 

II Y (t> II < y 
(3.10) 

Since 2 (t) = y (t) + E (t), h ence, taking into account (3.7) and (3.10) we obtain 

that for t > to, II EO II < K, II 010 U < K, II YO II 4 H 
II r.(t) II = II X (t> II < II Y (t) II + II e(t) II \<Y + D (K) = X,(N (3* 11) 

which implies that function I+’ of the form (3.8) is bounded in any arbitrary sphere 8, , 
since 

1 w (E, a, t) 1 < II E (t) II II x (t) II II a (t) II < (3. 1.2) 

DB(K)XL(K) = L(K) 

The total derivative of function (3.8) with respect to time, obtained from the so- 
lution of system (1.4), (1.5) is 

w’ (t) = a’X’Xa + e’ (A’Xa + X’a - XX’rE) = (a, y)’ + 
(3.13) 

E’ (A’& + X’t% - XX’W + 2 <a, Y> (a, FJ + <a, E>2 

since 

a’X’Xa = (a, x)~ = (a, y + E)~ 
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All quantities in the right-hand side of (3.13) are calculated for the same instant of time 

t. 

From Eq. (1.5) we obtain that for any t and t,, t > t, > t, , 

a (t) = a (t*) - 5 X’ (s) I’ (s, J’ (s), y (s)) E (s) ds 
t* 

(3.14) 

The substitution of (3.14) into (3.13) yields for the derivative of function W (E, a, t) 
the following formula: 

W’ (t) = (Cc (i*), y (t),’ $- E’ [A’SU -;- X’u --- SS’I’e] -+- 

(a(t), & ft)>” -k 2 (a(t), II (t)> (a (Q s (t)> -i- 

(3.15) 

\$ 1’ (s) I’ (ST .,‘ (s), 2, (s)) & (s) ds, /J (t) :‘: 
,’ 

* 

Equation (1.1) and conditions (3.71, (3.91, and (3.11) imply that 

!! S’ (,L) I/ z /I 2’ (t) Il G: II A II II 2 (a II -t- II 01 ct) II IIJ. (4 II -:_ 
/j ,/ (I) /I __ ( 11 A 11 + D (K)) S, (K) -j- l’, : .Y, (K) 

(3.16) 

Let us now assume that the solution .u (r’) = 0 of the reference model (1.2) is such 
that for any constant vector ‘1 ‘x (t*), q E I(“, I/ 7) I! > 11. 0 , any t* > to , 

and some number 13 ;,. L (K) there exists a 7’ (B) such that 

t*fT@) (3.17) 

s (% Y W as > 22 
t* 

For (3.17) to be valid the vector components must be linearly independent along 
some arbitrary segment [t+, t* + T (B)l . A further requirement is that the scalar pro- 

duct of vector y (t) by an arbitrary constant vector q, Ij TJ /I >, p > 0 must not tend to 

vanish too rapidly when t ---) ‘CO , Thus (3. 1’7) is an implicid condition imposed on the 
form of control action ii (t). 

It follows from (3.15) that the inequality 

w’(t) > <r, Y (OP - P ( II A II Xi (k’) D (K) t- X, (K) D(K) -t- 

xi1 (K) 11 r II p) - 2 pD’ (K) Y - Pa (K) - paXi’ (K) ‘< 
(3.18) 

II I‘ II 4 Y*T* (B) - 2 pX, (K) 11 I’ II Yb D (K) T (B) == 

<q, Y w - @iv (K Y, T (R) 

holds for all t, 0 6 to < t, d t -:> t, i- T (B) such that II E (t) 1) 6; p and 

P < II a (Q II < KY uniformly on E (t) and a (t) , 



Over-all asymptotic stability of self-tuning systems 

By virtue of (3.17) and (3.18) we have 

t.+T(B) t,+‘W) 

\ W.(s)ds > s <% Y(s)Yds- 
t. t* 

PT(B)N(K,Y, u~))>2B>=tw 

877 

(3.19) 

which is valid for any constant vector 7 E Rn , B > L (K) , and p <, pa such 

that p,T (B) N (K, Y, T (B)) = r/s B. 
It follows from (3.18) and (3.19) that function w (E, a, t) satisfies condition D) 

of Theorem 1. 

Using Theorem 1 and the known theorem on stability under conditions of constant- 

ly acting perturbations [7], we obtain the following theorem. 
Theorem 2. We assume that A is a constant matrix, the control function f (t) 

is bounded, and that 11 YO 11 < ff. If solution y (t) of the reference model [equation] 
satisfies condition (3.17) and matrix I? (t, 2, y) satisfies conditions (3.3) and (3.4), 

the trivial solution of system (1.4), (1.5) is then over-all stable with respect to initial 
data. Furthermore, such trivial solution is stable under constant action of perturbations. 

Systems in which only some of parameters Ui (i = 1, . . . , n) vary are encoun- 
tered in practical applications. The self-tuning circuit of such systems must be designed 
to control only the variable parameters. Conditions of the over-all asymptotic stability 
of such systems are obtained as the corollary of Theorem 1. 

When the reference model is defined by Eq. (1.2) and only parameters at places de- 
fined by ii, . . . , ik in the system received a priori unknown increments, the system 

can be defined by the equation 

Z’ (t) = AJ: (t) + [AA, + 6A, (4 x, Y)] x* (t) -t- f (t>, r(to) = z,, (3.20) 

where the 12 X n matrices AA * and 6A .+ (t, 2, y) are of the form (1.3) and the only 
nonzero elements in the last row of these matrices appear at places denoted by i,, 
. . . ,ik, with k < n. The n x 1 vector whose components at places i,, . . . , i, 
coincide with those of vector 2 (t) are denoted by Z, (t) . All other components are 
zero. 

The coordinate mismatch vector E (t) = z (t)- y (t) satisfies the equation 

E’ (t) = AE (t) + x, (t) a (t, z, Y), a (GJ = eo 
(3.21) 

where a*’ (t, Z, y) is the 1 x n vector of parameter mismatch and coincides with 
the last row of matrix AA, + 6A, (t, 5, y) and X, (2) is an n X n matrix whose 

all rows are zero, except the last one which is the same as vector x*' (t). 

The algorithm of self-tuning is defined by 

a,’ (0 = - X*’ (Q r (t, z, y> e (t) 
(3.22) 

a,’ (to) = ao*’ = {AA,}, 

All conditions of Theorem 1, except (3.17). apply to system (3.21), (3.22) in their 
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previous form. Condition (3.1’7) is defined in this case as follows. For any t, > t, > 
0 and any vector q*, 11 Q 11 > p > 0 whose components, except the i,, . . . , 
ik- th, are zero, the reference model vector ,rj (t) must be such that 

t,+T(w 

1 (?j*, y (.s))2 ds = t*+!(U)@*, y* (s)>” ds > 3B 
(3.23) 

t. f* 

where Y* (s) is a vector whose iI, . . , , ir-th components are the same as the com- 
ponents of vector r~ (s), and all remaining are zero. Thus in the considered case the less 
stringent condition (3.23) is su~ti~ted for (3.17). 

The conditions of asymptotic stability of system (3.21), (3.22) can be stated in the 

form of the following theorem. 
Theorem 3. Let all conditions of Theorem 1, except (3.17) replaced by condi- 

tion (3.23), be satisfied. The trivial solution of system (3. ‘21), (3.22) is then over-all 
asymptotically stable uniformly with respect to initial data. 

4. Let us show on an example the stringency of conditions (3.17) and of (3.23). 
Let the reference model and the system be defined, respectively, by equations of 

the form (4.1) and (4.2) 

Y” (t> -!- 2&Y’ (G + W (t> = f (% Y (t,) = YO? Y’ f&) = Y, (4.1) 

T:” (t) + 2 IS + CL1 (t, 5, y)] 2' (t) + la + a, (t, 2, $/)I 2 (t) = (4*2) 
f (tt 

Equation (4.1) is asymptotically stable when 6 > 0 and a > 0. 
If f (t) = 1, the solution of Eq. (4.1) is of the form y (t) = a-’ -!- PI.% (t> -i- 

&?YB f% Y’ (t) = BIY,’ (G i- BZYZ’ (t> I where Yr (t) and YZ (t) are two linearly 
independent solutions of that equation, and @I and pa are constants determined by 

initial conditions. Obviously 

I Y, ($1 1 4 I ~1’ PI I< C7 exp F- GO, C7, G > 0 

I if2 (8) I i- I ~a’ W 1 < C8 exp b- GA f% Cl, > 0 

Let us consider the scalar product < % Y (t) > = ‘W (t) + W’ (t) 
vector q’ = (31, %), %” i- %? >, pz . If Q = 0 and rl2 = p, then 

f*fRB) ,L 

s 91% (Y’ is))? ds < p” y &?A (s) + B.?y%* (Q < 
t* 0 

of the arbitrary 

Thus in this case condition (3.17) is not satisfied for fairly large numbers B , and 
there may be no over-all asymptotic stability with respect to all control parameters of 
system (4.2) with the reference model (4.1). 

But, if the system is of the form 
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5” (t) + 26x’ (t) + [a + Gl (t, 3, Y)lS (t) = f (t) (4.3) 

it is possible to use Theorem 3. Condition(3.23) is then satisfied when f (t) 3 1 , since 

for any r*, G, II q* II > p > o I B > o , and T @I > 3Balu2 

L+‘WO L+TW 

s (9*, Y*ys)Pds = s r1?~~ (4 ds 3 P’ $T(B);b3B 
t. t. 

Hence in this case we have asymptotic stability with respect to parameter GJ . 
Let 

lW=Aof i; (A k sin r+t $ B, co9 okt), a,#0 (4.4) 
kc1 

The solution of Eq. (4.1) is now of the form 
n 

y(t)= *+ c tEk sin Okt + Dk cos okt) f i%!h t, t f-k&(t) 
k=l 

A, (a - oka) + 2Bk,80k 
Ek= (a- 

B, la - 0~2) - 2Ak8ak 

0~232 + 482mka ’ * Dk = (a - 0~2)~ + 4820~2 

and (3.17) is defined by 

L+WO 

s (‘IIY (s) + %Y' bN2ds = 
t. 

(4.5) 

where g (t*, T (B), Q, na, ps, pp) is a bounded function for all r* > 0, T (B) > 0 and 
for all bounded ql, Q, p3, and pd. It follows from (4.5) that solution y (t) of Eq. (4. 1) 

with action (4.4) such that -4,” -i- B,’ i . . -t A,,’ -k Brl” > 0 satisfies condition 

(3.17). 
In conformity with Theorem 1 we have then an over-all asymptotic stability with 

respect to all control parameters and mismatch coordinates. 

The authors thank V.B. Kolmanovskii for discussing this subject. 
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